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Abstract—Ransomware is one kind of malware using cryp-
tography to prevent victims from normal use of their computers.
As a result, victims lose the access to their files and desktops
unless they pay the ransom to the attackers. By the end of 2019,
ransomware attack had caused more than 10 billion dollars of
financial loss to enterprises and individuals. In this work, we
propose a Network-Assisted Approach (NAA), which contains
local detection and network-level detection, to help user determine
whether a machine has been infected by ransomware. To evaluate
its performance, we built 100 containers in Docker to simulate
network scenarios. A hybrid ransomware sample which is close
to real-world ransomware is deployed on stimulative infected
machines. The experiment results show that our network-level
detection mechanisms are separately applicable to WAN and LAN
scenarios for ransomware detection.

I. INTRODUCTION

Ransomware is a type of malware which blocks computer
users’ access to their data or systems by encrypting important
files in computers. Victims have to pay the requested ransom to
get decryption keys from the attackers so that they can recover
their data and systems. Sometimes the files cannot be recovered
even if ransom is paid either because by accident the victim
destroys the file which contains decryption key or because the
attacker breaks promise. Since ransomware attack is easy to
implement and attackers can extort a large amount of money
once it succeeds, a lot of ransomware have emerged in recent
years and caused huge losses worldwide.

Here are some examples of ransomware attacks. Petya [29]
is a family of ransomware first discovered in March 2016.
It targeted Microsoft Windows-based systems and encrypted
a hard drive’s file system table to prevent the system from
booting. Victims had to pay the ransom in Bitcoin in order
to regain access to the system. In June 2017, a derivative
of Petya called NotPetya [29] launched a global attack on
Microsoft Windows systems again via EternalBlue exploits and
totally caused more than 10 billion dollars financial losses. In
October 2017, a new ransomware attack named Bad Rabbit [1]
was discovered in Russia and Ukraine, which follows a similar
pattern to Petya. It encrypted the Windows user’s file tables
and then demanded a Bitcoin payment to decrypt them. Some
researchers believed that Bad Rabbit had been distributed
due to a bogus update to Adobe Flash software. At that
time, a lot of agencies were affected by this ransomware
including Interfax, Odessa International Airport, Kiev Metro
and the Ministry of Infrastructure of Ukraine. In 2018 and
2019, ransomware still played an important role in malware

family and exerted a significant impact on global computer
users, especially Microsoft Windows operating system users.
GrandGrab, Hermes2.1, Ryuk, Scarab, LockerGoga, etc. are
all ransomware emerged during these two years targeting at
Microsoft Windows since this system is the most common
operating system used by enterprises and organizations that
are potential blackmail objects for whom large ransoms are
affordable.

As Linux operating system becomes increasingly popular
in recent years and more businesses than ever are running
on Linux now, Linux-oriented ransomware have sprung up to
attack Linux users for exorbitant profits. In 2017, KillDisk [2]
ransomware encrypted files, demanded bitcoin ransoms and
left Linux systems unbootable. Erebus [3] ransomware affected
about 3400 of NAYANA’s clients via malware-containing
advertisements. In 2019, Lilocked [4] ransomware targeted
Linux servers and gain root access to encrypt the files with
extensions such as PHP, HTML, CSS, etc. The victims were
guided to dark web to make a payment in bitcoin in order
to recover their files. The mechanism behind this ransomware
is still a secret, researchers are looking out for a sample to
discover the solution for decrypting affected files. Compared
with ransomware targeted for Microsoft Windows operating
system, Linux-oriented ransomware have not made a huge
impact on enterprises and individuals up to now. However,
this situation could change in the near future because the ran-
somware makers are always driven by profits. It is inevitable
that more companies and individuals in industry will adopt
Linux system due to its security, stability and open-source-
ness, which will lead to the generation of many ransomware
targeted at Linux operating system.

Among all types of ransomware in ransomware family,
cryptoworm is one of the most troublesome genre. It spreads
in the form of a worm, which means it can replicate itself
and spread to other computers. Thus, cryptoworm can produce
more serious consequence than other kinds of ransomware
from the overall point of view once it is successfully designed
and put into use by attackers. WannaCry [30] is an example of
cryptoworm which broke out in May 2017. It used EternalBlue
exploits to gain accesses to Microsoft Windows operating
systems. As soon as the cryptoworm infected a computer,
it encrypted data on the computer and later extorted Bitcoin
cryptocurrency from the victim. Many organization systems
were infected and helped spread WannaCry at that time be-
cause those systems did not apply newest patches released
by Microsoft. This attack affected about 200,000 computers
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across 150 countries and resulted in total damages ranging
from hundreds of millions to billions of dollars.

Since ransomware attacks emerge in endlessly, people all
around the world is suffering from unanticipated threats to their
property. To help individuals and collectives to get rid of this
kind of financial loss, ransomware detection is an indispensable
topic in study.

To mitigate the damage of ransomware attacks especially
cryptoworm attacks, we proposed a Network-Assisted Ap-
proach (NAA) for ransomware detection, which combines
local detection and network-level detection that successively
give user a local report and a comprehensive report about
respective detection result. The comprehensive detection report
uses wisdom of the crowd to help computer users determine
whether they are undergoing a ransomware attack so that they
can take actions timely and avoid ransomware extortion.

We designed a local detection algorithm that is applicable
on all kinds of operating systems and implemented a local
detection mechanism prototype targeted at Linux system. In
the local detection algorithm, we considered three features
displayed on local hosts, among which there is a brand new
feature never been used by previous works to the best of our
knowledge, to generate a local report in an accurate and instant
manner.

As for network-level detection, we adapted ant colony
optimization algorithm to our problem and implemented an
ACO-based Mechanism (ACOM) which sufficiently collects
information from other machines so that a comprehensive re-
port can be generated to help user determine whether the local
host is attacked by ransomware or not. We also implemented a
simple method named Broadcasting Mechanism (BM) which
exhaustively collects information and used wisdom of the
crowd to help user determine current safety state. These two
network-level detection mechanisms are separately suitable for
ransomware detection in WAN and LAN.

To estimate the performance of NAA, we established
100 containers in Docker and applied a Linux ransomware
sample GonnaCry to simulative infected containers to mimic
network scenarios. Then, we launched NAA in each container
to achieve the evaluation of accuracy, message overheads and
latency.

The main contributions of this paper are:

(1) Propose a ransomware detection approach NAA es-
pecially targets at cryptoworm, which combines local
detection and network-level detection to generate a
report for user’s reference.

(2) Present a local detection algorithm applicable to all
operating systems and implement a prototype on
Linux system.

(3) Apply ACO algorithm to network-level detection
to implement a sufficient and reliable network-level
detection mechanism ACOM to collect information
from network.

(4) Build a network scenario by establishing 100 contain-
ers in Docker and launching a ransomware sample on
simulative infected machines to estimate the perfor-
mance of NAA.

The rest of this paper is organized as follows: Section
2 describes the background knowledge of both ransomware
and ransomware detection approaches; Section 3 explains our
motivations and generalizes the outline of NAA; Section 4
describes the design and implementation of our local detection
mechanism; Section 5 describes the details of ACOM and
BM; Section 6 evaluates NAA’s performance from accuracy,
message overheads and latency; Section 7 concludes the paper
and discusses future work.

II. RELATED WORK

Cryptographic ransomware is also called crypto ran-
somware, which always encrypts user files and then extorts
users for cryptocurrencies before providing the decryption key.
It is favored by attackers because digital currencies such as
Ukash or Bitcoin and other cryptocurrency provide strong
anonymity, making it difficult to trace and prosecute the
perpetrators based on ransom payment transactions. Previous
works on ransomware detection mainly focused on checking
the features that are displayed due to ransomware behaviors on
local hosts. And, they were designed for Microsoft Windows
operating system because Windows is more vulnerable and is
the target of most crypto ransomware.

In 2015, Ahmadian et al. [9] proposed a comprehensive
ransomware taxonomy and presented a connection monitor and
connection breaker technique for detecting highly survivable
ransomwares in the key exchange protocol step. In 2016, Paik
et al. [23] proposed a storage-level detection method, which
detects the existence of ransomware based on storage-access
activities, e.g., number of files accessed and read/write fre-
quency. Scaife et al. [25] presented an early-warning detection
system that alerts users during suspicious file activity using a
set of behavior indicators like entropy, file differences, magic
bytes and read/write frequency. K. Cabaj et al. [12] analyzed
the behavior of a popular ransomware named CryptoWall and
proposed two real-time mitigation methods using SDN-based
algorithm. C. Moore [20] investigated ransomware detection
methods that implement canary files to monitor changes under
folders and ascertained that canary files offer limited value
as there is no way to influence the ransomware to access the
folder containing monitored files. Sgandurra et al. [26] pre-
sented a machine learning approach for dynamically analyzing
and classifying ransomware. It monitors application behaviors
and checks characteristic signs of ransomware including file
extension, read/write frequency and function calls.

In 2017, Y. Feng et al. [16] proposed a new approach
based on deception and behavior monitoring to detect crypto
ransomware with no loss. Their approach creates decoy files
and makes ransomware operate on decoy files firstly, and then
monitor the decoy files by checking whether they are encrypted
by ransomware through the comparison of Shannon entropy,
file type and sdhash between original files and changed files.
Chadha et al. [13] discussed several machine learning al-
gorithms for discovering DGA domains and analyzed their
performance. Kirda et al. [18] presented a dynamic analysis
system which automatically generates an artificial environment
and detects when ransomware interacts with user data. In their
system, entropy, removed files and read/write frequency are
considered as monitor objects. Chen et al. [15] monitored
the actual behaviors of software to generate API call flow



graphs and used data mining techniques to build a detection
model for decide whether the software is benign or is a
ransomware. Kharraz et al. [17] proposed a defense approach
which maintains a transparent buffer for all storage I/O and
then monitors the I/O request patterns of applications on a per-
process basis for signs of ransomware-like behaviors including
entropy, removed files, file extension and read/write frequency.

In 2018, Khashif et al. [28] presented a hybrid approach
that combined static and dynamic analysis to generate a set
of features that characterizes the ransomware behavior. This
approach analyzes software binary code first, and then checks
entropy, canary files, read/write frequency and function calls.
Alaam et al. [10] presented a detection tool which uses arti-
ficial neutral network and Fast Fourier Transformation (FFT)
to develop a solution to ransomware detection by checking
functions and frequency. Quinkert et al. [24] presented a
defense system that learns features of malicious domains
by observing the domains involved in known ransomware
attacks and then monitors newly registered domains to identify
potentially malicious ones. Moussaileb et al. [22] presented
a graph-based ransomware countermeasure which uses per-
thread file system to highlight the malicious behaviors such as
modification of canary files and accesses to large number of
directories in a small time period. Morato et al. [21] proposed
an algorithm that can detect ransomware action over shared
documents by applying a network traffic inspection device
between local users and shared volumes. The inspection device
extracts SMB protocol commands through every access to
the shared volumes it monitored and analyzes SMB traffic to
determine whether the network volumes shared using SMB
protocol is attacked by ransomware or not.

In 2019, A. O. Almashhadani et al. [11] demonstrated a
comprehensive behavioral analysis of crypto ransomware net-
work activities including DGA, SMB traffic and general traffic
for detection of ransomware. Lee et al. [19] proposed a method
that utilizes an entropy technique to measure a characteristic of
the encrypted files. Machine learning is applied for classifying
infected-files-based file entropy analysis.

The above literature covers almost all features that charac-
terizes the ransomware behaviors. Our local detection mecha-
nism also uses some of this kind of features to help determine
whether a local host is a suspicious victim or not whereas a
brand new feature ”read/write pattern” is considered as well
to help make accurate diagnosis on local hosts. Moreover,
our approach contains network-level detection to offer more
accurate detection results. While the papers mentioned above
designed defense methods for Windows system, our prototype
of the local detection mechanism targets at Linux system
which is the next popular attack object of ransomware attacks
although our approach is applicable on both Windows system
and Linux system. We can easily derive a Windows version
using the same design but different system libraries and tools.

III. OUR NETWORK-ASSISTED APPROACH

A. Background Knowledge

1) Characteristics of Ransomware Behaviors:
Ransomware attacks always access victim’s operating
system in some way and encrypt a large number of user
files or system files or both automatically in a short time.

During this process, the infected system performs differently
from what it should be when there is no ransomware
attack. This common trace provides various kinds of useful
information that can be extracted from a suspected victim
when a ransomware is running. Although there are some
differences on key generation and key preservation strategies
among different ransomware, we can still conclude the
following common features that show so obvious distinctions
between safe and infected circumstances that can be used for
ransomware detection.

(1) Keywords
If a software is a ransomware, it probably contains
some keywords that are commonly used in ran-
somware binaries. For example, “bitcoin”, “crypto”,
“ransom”, etc. are common strings frequently appear
in ransomware binaries. By inspecting software bina-
ries, we can figure out some suspicious software even
before ransomware attack happens.

(2) Function Calls
Since ransomware needs to encrypt files, it always
calls functions related to cryptographic algorithms,
including key generation, encryption and decryption
functions. These functions may be written by the
attacker or invoked from existing libraries. We can
inspect binaries to locate the software that call these
functions.

(3) Data Information
Once a file is encrypted, we can observe some
changes on this file. The file extension may be
modified to a specific extension designated by the
ransomware. The entropy of the file increases due to
the randomness of data after encryption. The magic
bytes of this file are different from original bytes
because they are encrypted. Some files are even
deleted since the ransomware created new files to
store encrypted versions. All of these features provide
useful information for ransomware detection.

(4) Metadata Information
Metadata information refers to some indirect informa-
tion we can collect during ransomware attacks instead
of information from file contents. Ransomware is an
automatic program that encrypts a large number of
files in a very short time in most cases due to super-
fast computation speed of computers. So, when a
ransomware is working, it accesses many files and
directories, and then performs read and write opera-
tions on these files in short time periods, which leads
to high file/directory access rate and high read/write
frequency on a computer. This phenomenon also
indicates a potential ransomware attack.

(5) Network Traffic
Some ransomware generate and store their keys on
a remote server so that victims cannot figure out
decryption keys without paying ransom. As for this
kind of ransomware, it must contact the remote server
to get encryption key during the attack. Thus, an
unknown network traffic that is not produced by the
user of the local host can be inspected, which helps
ransomware detection.

All these features listed above can be used to judge if



the computer is in abnormal conditions and thus help deter-
mine whether there is ransomware working on this computer.
However, one feature alone in consideration is insufficient for
accurate detection results. So, most detection approaches pick
several features and combine their checking results together to
decide whether to alert user ransomware attack or not.

2) Wisdom of the Crowd: The wisdom of the crowd [31]
is a collective opinion produced by a group of people instead
of an individual. Some experiments showed that the collective
knowledge of ordinary people is more precise than that of
an expert. The reason for this phenomenon is that there is
idiosyncratic noise associated with each individual judgment,
and taking the average over a large number of responses will
go some way toward canceling the effect of this noise. Thus,
this notion has been applied to many social information sites
such as Quora, Wikipedia and Yahoo! Answers.

For high accuracy of ransomware detection results, we also
use wisdom of the crowd in network-level detection of NAA
to generate a comprehensive report for users to reference and
to determine whether they need to do further actions to deal
with potential ransomware attacks.

B. Our Motivation

As we can observe in ransomware attack cases, majority of
ransomware have this property: Their appearance and diffusion
are related to network. If one machine is infected by some
ransomware, the others in the same local area network (LAN)
are potential victims. That is because LAN is deployed by
entities such as enterprises, laboratories and schools to inter-
connect computers within a small area. Computers in one LAN
are often equipped with the same operating system and the
same version. So, if a computer is attacked by ransomware
via some exploit, the others are possibly attacked or going to
be attacked because they share the same vulnerability. Worse,
if the ransomware is a cryptoworm that actively scans the local
network to compromise other machines, those computers in the
same LAN are hence under high risk. Even if in a wild area
network (WAN), cryptoworm can spread in high speed because
it is self-propagating, which means one infected computer can
infect almost all computers communicated with it and result
in fast increase of infected computers.

So, network related information that is corresponding to
the conditions of other computers in network is very useful
in ransomware detection especially in cryptoworm detection.
However, existing approaches for ransomware detection only
consider the characteristics of ransomware behaviors on local
hosts as the parameters of their detection tools. One exception
is the work [21] that analyzes file sharing traffic in a volume
sharing scenario to detect possible ransomware. However, this
work still did not have an eye on the security information of
other computers in network.

Motivated by the above observations, we propose a
network-assisted approach which contains both local detection
and network-level detection. Local detection is responsible for
checking local features of a machine to make a preliminary di-
agnosis whereas network-level detection collects security con-
ditions of other machines in a specific area to help determine
whether the local host is infected or not. Since one machine
can be in both LAN and WAN, our network-level detection

has two separate schemes for these two scenarios. To achieve
security conditions of other machines from WAN, we design
an ACO-based Mechanism (ACOM), which uses ant colony
optimization algorithm to efficiently collect maximum amount
of information with minimum network resource consumption
and report its detection result to the user. To obtain desired
information from LAN, we design Broadcasting Mechanism
(BM). It directly collects information of all machines in LAN
and uses wisdom of the crowd to report a comprehensive
detection result. With the information provided by ACOM
and BM, NAA can accurately detect ransomware especially
cryptoworm and help user judge whether the local host is
infected or not.

C. Outline of NAA

NAA is a ransomware detection application that does both
local detection and network-level detection. The local detection
checks local features while the network-level detection collects
security conditions of other machines from network to provide
information for user to judgement whether the local host is
attacked or not. Figure 1 shows the workflow of NAA.

Fig. 1. Workflow of NAA.

First of all, we run the local detection mechanism on each
local host. If the local detection mechanism finds anomalous
tasks, it suspends them using “kill -STOP pid” command
and accordingly raises an alert to the end user. Then, based
on his knowledge, the user should respond to NAA whether
the anomalous behaviors are caused by a legitimate user
operation or not (e.g., when the user is encrypting files with
a special tool). If they are, NAA will resume the suspended
processes using ”kill -CONT pid” command and continue
to do local detection. If the user indicates these behaviors
are anomalous (either because they are truly anomalous or
because the user has no idea on what is going on), network-
level detection should be launched. During the process of



network-level detection, ACOM is responsible for collecting
information from WAN and BM is responsible for collecting
information from LAN. Once both mechanisms finish their
work, a comprehensive report will be sent to the user describ-
ing the current network-wide situation. Then, the user can get
an idea on the fraction of computers in the LAN that are also in
the anomalous state and how ACOM views about the current
state of this local host. Based on such given information, the
user can make a judgement about whether this local host is in
danger. If the answer is yes, NAA finishes its work; otherwise,
the computer is considered safe and NAA will resume the
suspended tasks and continue with local detection.

In the following sections, we will explain how local detec-
tion and network-level detection work and generate reports in
detail.

IV. LOCAL DETECTION

A. Design of Local Detection Algorithm

Review that local detection checks some common features
on local hosts which always display different characteristics
under safe condition and infected condition. Section 3.1 intro-
duced characteristics of ransomware behaviors and listed the
features that could be considered in local detection.

In our local detection algorithm, we pick entropy,
read/write frequency and read/write pattern as input parameters
to diagnose the local host because the combination of these
three parameters provides both high accuracy and efficiency.
Among them, entropy and read/write frequency are classic
features used by previous methods while read/write pattern
is a brand new feature firstly proposed by this paper.

Entropy is the measurement of the randomness originally
used in thermodynamics. In 1984, Claude E. Shannon applied
entropy to digital communications in his paper “A Mathemati-
cal Theory of Communication” [27]. After that, people started
to use entropy to describe the extent of the randomness of a
digital file. Encrypted files and compressed files tend to have
higher entropy than normal files because the bytes in encrypted
files and compressed files are more random. So, we can use
entropy to help us determine if a file is in normal condition
or not. However, even if we can find files with high entropy
in a system, we cannot deem that this system is infected by
ransomware because there are two exceptions: 1) The files
with high entropy are compressed files instead of encrypted
files. 2) The files are encrypted files, but they are encrypted
by authorized users. Thus, this feature alone is not sufficient
to produce an accurate ransomware detection result. We use
further features to help us make more accurate judgements.

Read/write frequency describes the frequency of read and
write operations on a machine. Ransomware always encrypts
many files in a short time because they do not want to be
detected before they finish work. Moreover, they want to
encrypt as many files as possible so that the attackers are more
likely to get ransom from the victim. We all know that file
encryption task is related to read and write operations. So, if
a ransomware is working, we can probably observe high read
and write frequencies on a system. However, we still cannot
make accurate diagnosis about whether a system is a potential
victim or not with these two features because there are still

some exceptions such as batch file compression. It has the
same behaviors as ransomware attack when only considering
entropy and read/write frequency.

To distinguish the behaviors of ransomware attack and
other normal behaviors that also result in high file entropy
and high read/write frequency such as batch file compression,
we take read/write patterns as the third feature since different
tasks usually have different read/write patterns. To our best
knowledge, this feature has not been used in prior work. We
use it to distinguish user’s normal behaviors from ransomware
activities. Here read/write patterns refer to the relationship
between read and write operations occurred on a system.
For example, if there is a read operation right after a write
operation, we can use {write, read} to describe their relation
during this period. If there is a read operation before write
operation, but between them exists a close operation, we can
use {read, ..., write} to describe the read/write pattern in this
scenario which means there exist(s) other operation(s) between
read and write. When ransomware is encrypting a file, it always
reads the original file first and writes the ciphertext into a
new created file. Then, the original file is deleted so that
only encrypted file left. Ransomware encrypts files one after
another, which makes read and write operations pairs appear
at intervals. So, the pattern of ransomware activity can be
concluded as {read, write}. In contrast, batch file compression
task continuously reads each file in a specified directory and
finally writes compressed texts into the compressed file after
closing these original files. There is no adjacent read and
write operations in its pattern. Other tasks also have their
own read/write patterns that are usually different from those
of ransomware activities. Thus, read/write patterns can help us
filter out some benign behaviors when detecting ransomware
attacks.

Our local detection algorithm comprehensively considers
these three features to make a conclusion about whether the
local host is anomalous or not. This algorithm is applica-
ble to all operating systems because no matter what kind
of operating system the ransomware is working on, it has
common behaviors which will cause common characteristics.
In our implementation, we used this algorithm to build a
local detection mechanism prototype for Linux system as an
example.

B. Implementation of Local Detection Mechanism

This subsection describes the outline and details of the
local detection mechanism which is implemented to support
network-level detection methods. Since the local detection al-
gorithm described in Section 4.1 is applicable to any operating
system, we selected Linux system as an example to implement
a prototype.

1) Overview: As we already known, all ransomware en-
crypt files to extort victims. Thus, all ransomware activities
are related to operations on file system. To monitor the related
operations on Linux file system, we use a tool called inotify [5]
which is a Linux kernel subsystem that can monitor file system
events and report changes. Inotify events include IN OPEN,
IN ACCESS, IN MODIFY, IN DELETE and etc., among
which IN ACCESS indicates read operation and IN MODIFY
indicates write operation. We can use several system calls



provided by the inotify API to monitor a specified directory. To
monitor the entire file system, we can use ”/.” as the directory
name to be monitored which represents the root directory
of Linux file system. Once inotify starts to work, all events
occurred in the directory tree can be captured and an event
handler defined by us will deal with these events following
detection requirements.

Our local detection mechanism prototype utilizes inotify
to monitor Linux file system and combines altogether three
features mentioned in Section 4.1 (entropy, read/write frequen-
cies, read/write patterns) to measure whether the local host is
anomalous or not. Figure 2 shows the workflow of the local
detection mechanism.

Fig. 2. Workflow of local detection mechanism.

At the very beginning, we add a watch to the root directory
so that we can monitor the entire file system. Then, start
inotify. We first check read/write patterns because it can be
done instantly when a new event is monitored. If there is a
pattern matching with anomalous pattern, that is, the checking
result of the first module is ”anomalous”, start a new thread
to do further detection. This pattern checking module keeps
working no matter what the result is because inotify keeps
monitoring the file system and we don’t want to miss any
possibly upcoming anomalous patterns. When we start the new
thread, we also pass the path of the file where the anomalous
write operation happened.

The new thread works on checking the other features. It
first checks file entropy of the potentially encrypted file whose
path was passed by the pattern checking module when the
new thread was created. If the file entropy is too high to
be normal, that is, the checking result of the second module
is ”anomalous”, go to the next module to check read/write
frequency. Otherwise, the new thread stops because the local
host is currently in safe state. Our reason for this judgement
is that, the modified file, where the anomalous pattern is
discovered, has normal entropy value which means it is not
encrypted. This phenomenon is impossible to occur if the
local host is undergoing a ransomware attack. In the third
module, we check read/write frequency. If current read/write
frequency on this system is too high to be normal, that is, the
checking result of the third module is ”anomalous”, the local
detection mechanism can make a diagnosis that this machine
is anomalous because it shows anomalous characteristics in
all three aspects. Otherwise, stop the new thread because the
local host is safe. Note that, the local host has an initial state:

safe. If the local detection mechanism cannot find the proof to
confirm this machine is in anomalous state, we consider it is
safe by default.

The rest of this subsection elaborates on how each module
is implemented.

2) Check Read/Write Patterns: According to the work
procedure of common ransomware, we know that ransomware
always automatically encrypt files one after another. As for
each file, the encryption task consists of several file operations:
(1) Open the original file; (2) Create a new file; (3) Open
the new file; (4) Read plaintext from the original file; (5)
Write ciphertext in the new file; (6) Close the original file;
(7) Close the new file; (8) Delete the original file. During this
process, we can observe adjacent read and write operations
with read before write. To distinguish read/write patterns of
file encryption task with that of other tasks, we also observed
the read/write patterns of some common user behaviors. By
adding a watch to a particular directory, we can observe the
events in this directory.

Table I lists file operations during file encryption and
other normal tasks. According to this table, we can find that
the read/write pattern of file encryption task is {read, write}
which indicates a single pair of read and write operations
with read before write. This {read, write} pair can appear
many times, but other operations exist between two adjacent
pairs. File modification and compression tasks have the follow-
ing read/write pattern, {read, ..., write}, which means some
other operations between read and write operations. When
we decompress a file, only read operation occurs. The most
confusing task is browsing a webpage, because it has similar
read/write patterns as file encryption. When we browse a
webpage, we can observe adjacent read and write operations as
well. However, there exists continuous read operations before
a write operation or iterative read/write pairs. So, we mark the
read/write patterns of browsing a webpage as {read*, write}
and {read, write}*, which are different from the read/write
pattern of file encryption task.

Thus, we consider {read, write} as an anomalous read/write
pattern indicating file encryption activities. Only when there is
a read operation right before a write operation and before them
are other file operations, we can say we find an anomalous
pattern. We set a judgement condition that if there exists {read,
write} on a monitored system, the local host is potentially in
risk, further diagnosis is in need. Otherwise, the local host
is safe. Since inotify monitors the entire file system in the
implementation of our local detection mechanism, we admit
that sometimes some operations from different tasks may mix
together. That is, inotify may capture an operation from task
A after an operation from task B but before another operation
from task B, which may generate anomalous pattern while
there is no anomalous behaviors. In this case, this pattern
checking module causes false positives, that is why we need
further diagnosis to check other features.

To be aware of the anomalous read/write patterns in time,
we customize the inotify event handler in the following way:
record all monitored events in order in an event list; once
coming across a write operation, check the last two operations
in event list. If the last one is read as well as the last-second
one is neither read nor write, the anomalous read/write pattern



Tasks File operations Read/write patterns
Encrypt a file open, create, open, read, write, close, close, delete. {read, write}
Modify a file open, read, close, open, create, open, close, write, close. {read, ..., write}

Compress a file open, create, open, read, close, write, close. {read, ..., write}
Decompress a file open, read, close. {read}

Browse a webpage 1 create, open, write, close, read, ..., read, write. {read*, write}
Browse a webpage 2 ..., read, write, read, write, ..., read, write. {read, write}*

TABLE I. READ/WRITE PATTERNS OF DIFFERENT TASKS

is found; otherwise, empty the event list and continue to add
monitored events into the list. Figure 3 shows the code of our
event handler.

Fig. 3. Event handler for local detection.

Once an anomalous read/write pattern {read, write} is
discovered on a system, the checking result of the first module
is ”anomalous”. So, we should start a new thread to do further
diagnosis and pass the path of the file where this anomalous
write operation happened to the new thread so that the second
module can directly locate the file it needs to check.

3) Check File Entropy: There is an existing algorithm
for file entropy calculation [6]. Given a file, this algorithm
traverses the target file to get the frequency count of each
byte value and then uses the following formula to cumulatively
calculate the entropy of the entire file.

entropy = entropy + freq ∗ log2 freq (1)

Here, the variable ”entropy” is initialized to 0 and gradually
increases until all ”freq” related values are included, the
variable ”freq” represents the frequency of each byte value.
With this algorithm, we can easily calculate final entropy value
for a target file.

To distinguish normal files and encrypted files through file
entropy, we launched an experiment to calculate the entropy
values of various kinds of normal files and encrypted files.
Table II lists the entropy values of many different types of
files in normal state and encrypted state.

We can observe from Table II that text files which consist
of English words have relatively low entropy in normal state.
The entropy of this kind of normal files ranges from 4.0 to 5.0
while that of their corresponding encrypted files ranges from
7.0 to 8.0 in Linux file system. As for other types of files such
like pictures and audios, they have relatively high entropy even
in normal state. After being encrypted, their entropy values
are tend to be 8. So, we deal with different kinds of files in
different ways. As for a text file, we set the threshold 6.00. As
for an non-text file, the threshold is set to be 7.99. Then, we
can determine whether a file is anomalous or not by checking
its entropy.

First, we check file extension of the target file. If the
file extension is out of our knowledge, this file must be
encrypted by ransomware because ransomware always modify
file extension after encrypting a file. If we can recognize the
file extension, calculate file entropy and compare entropy value
with appropriate threshold value. If the entropy of the inspected
file is greater than or equal to the threshold value, this file is
considered to have an anomalous entropy value. That is, the
checking result of the second module is ”anomalous”. Then,
the third feature ”read/write frequency” should be checked for
final detection result. Otherwise, this is not an encrypted file,
hence not a ransomware attack.

4) Check Read/Write Frequency: The final checkpoint con-
cerns read/write frequency on the local host. Once a read or
write operation is monitored by inotify, the event handler will
record the time it occurred, as shown in Figure 3. What is
more, the redundant contents in time list will be removed
at the beginning of the new thread so that only the read
and write operations that occurred after {read, write} pattern
will be recorded in time list. Since we ran a new thread for
further diagnosis, event handler can continue to record the
time of upcoming read and write operations. With the recorded
information in time list, we can calculate read/write frequency
in the system after the anomalous pattern is found, which
is defined as the average number of read/write operations
occurred per second:

read/write frequency =
operation counts

duration
, (2)

where ”operation counts” represents the total number of
recorded read and write operations after an anomalous
read/write pattern, ”duration” represents the time interval be-
tween the first recorded operation time and the last one in
time list. We can achieve the value of ”operation counts” by
counting the number of elements in time list and calculate
”duration” by computing the difference between the first and
the last element in time list.

To distinguish normal read/write frequency with anomalous
read/write frequency caused by ransomware activities, we did



File types Normal state Encrypted state
.txt 4.62 7.98
.log 4.76 7.83
.conf 4.47 7.92
.pgn 7.91 8.00
.jpeg 7.94 8.00
.pptx 7.94 8.00
.mp3 7.95 8.00

TABLE II. FILE ENTROPY OF DIFFERENT FILES IN NORMAL STATE AND ENCRYPTED STATE

two experiments that respectively tests the read/write frequency
during simulative ransomware activities and user normal be-
haviors.

In the first experiment, we use AES ciphers and RSA cipher
from openssl library to encrypt files whose sizes range from
1KB to 1MB. As for each test, given cipher type and file size,
encrypt 100 files automatically. Table III shows the experiment
results. When the file size is specified, the read/write frequency
hardly changes with different ciphers applied. When the cipher
type is decided, larger files tend to cause larger read/write
frequency. When we use RSA cipher, it can only encrypt small
files due to the limitation of its encryption key length in openssl
library, so, we did not get test results for relatively large files
when RSA is applied. However, it does not matter because
in real-world ransomware, RSA is always used to encrypt
keys whose length is relatively small. In the tests, we also
observed the number of read and write operations occurred
during file encryption tasks. By analyzing the data in Table III,
we found the read/write frequency on a system undergoing
ransomware attack should be over 600 operations per second.
Even if the ransomware is encrypting files smaller than 1 KB,
the read/write frequency could not be smaller than 600 op/sec.
The reason is that, when the file size is 1 KB, there are totally
200 read and write operations happened on 100 files. That is to
say, there is only one read and one write operation during the
encryption of one file. So, when ransomware works on files
that are smaller than 1 KB, the number of read/write operations
will not change whereas the time consumption can be smaller
than that of encrypting 1 KB files, which makes read/write
frequency larger than 600 op/sec. Therefore, we can set the
lower bound of the read/write frequency during ransomware
activity to be larger than 600 op/sec.

Then, we use another experiment to test the read/write
frequency during normal user behaviors. Table IV shows the
experiment results. For example, when we use Firefox, the
maximum read/write frequency on this machine is 322 op/sec
and the average read/write frequency is 95 op/sec. When we
watch a video on YouTube, the maximum frequency is 342
op/sec while the average frequency is only 105 op/sec. We can
observe that the upper bound of read/write frequency during
normal user activities are smaller than 400 op/sec.

Since the upper bound of normal read/write frequency
is lower than 400 op/sec meanwhile the lower bound of
anomalous read/write frequency is higher than 600 op/sec. We
picked the mid number 500 as the threshold. If the current
observed read/write frequency is greater than or equal to
500 op/sec, the checking result of the third module will be
”anomalous”. Then, the local detection mechanism can finish
its work with an ”anomalous” detection result. Otherwise,
since the read/write frequency is normal, this machine is

considered safe.

In summary, the local detection mechanism uses inotify
to keep monitoring the local host and checking read/write
patterns. An anomalous read/write pattern will trigger further
diagnosis. If all features show anomalous checking results, the
local detection mechanism will send an alert to user reporting
anomalous state on this machine and suspicious tasks that are
performing anomalous behaviors. After that, all running tasks
on this machine will be suspended and then the network-level
detection will be triggered to collect information from other
machines.

C. Validation of Local Detection Mechanism

As we mentioned in Section 3.1, using one feature alone
to detect ransomware is not sufficient because single feature
methods will cause many false positives and false negatives.
For example, if we use file entropy as the only feature to
determine whether a machine is infected, the compressed files
will be mistaken for encrypted files and result in false positives.
To validate the service of our local detection mechanism, we
applied it on two machines under two different scenarios.

In the first scenario, both of these two test machines are
safe. We ran our local detection mechanism on them for two
days and used them as usual such as doing course projects,
reading papers, writing assignments, watching movies, playing
computer games and etc. In the second scenario, we also ran
our local detection mechanism on these two test machines
for two days, but during this period, we applied the Linux
ransomware GonnaCry [8] on them at random time for 48
times and recorded the detection results.

Table V shows the test results, we can know that there
were 3 false positives on Machine1 but no false negative case
during the experiment. That is to say, when the test machines
are in safe state, our local detection mechanism reported
”anomalous” detection results for three times on Machine1.
When the test machines are under the risk of ransomware
attacks, all attacks were correctly detected and reported by our
local detection mechanism. We also found the reason for these
3 false positives. They are caused by file encryption behaviors
performed by authorized users.

Sometime, although there is no ransomware attack, users’
ransomware-like behaviors will cause false positives. That’s
why we need network-level detection to help us correct some
false positives of local detection and to provide users with more
accurate information to judge whether there is a ransomware
attack indeed.



1 KB 10 KB 100 KB 500 KB 1 MB
AES 128 CBC 742 op/sec 1379 op/sec 8318 op/sec 33876 op/sec 43363 op/sec
AES 256 CBC 724 op/sec 1437 op/sec 8642 op/sec 33920 op/sec 43780 op/sec
AES 128 ECB 749 op/sec 1440 op/sec 8758 op/sec 34162 op/sec 43027 op/sec
AES 256 ECB 788 op/sec 1380 op/sec 8546 op/sec 33697 op/sec 43998 op/sec

RSA 651 op/sec - - - -
Op counts 200 400 2600 12400 24600

TABLE III. READ/WRITE FREQUENCY DURING BATCH FILE ENCRYPTION.

Applications Max Frequency Average Frequency
Firefox 322 op/sec 95 op/sec

Text editor 210 op/sec 88 op/sec
LibreOffice writer 310 op/sec 35 op/sec

YouTube 342 op/sec 105 op/sec
Amazon 281 op/sec 121 op/sec
Gmail 253 op/sec 74 op/sec

TABLE IV. READ/WRITE FREQUENCY DURING NORMAL BEHAVIORS.

Machine Number of false positives Number of false negatives
Machine1 3 0
Machine2 0 0

TABLE V. FALSE POSITIVES AND FALSE NEGATIVES CAUSED BY LOCAL DETECTION MECHANISM

V. NETWORK-LEVEL DETECTION

The network-level detection works on collecting security
conditions of other machines from network and generating a
comprehensive report to help user determine whether there ex-
ists ransomware attack. It can help correct some false positives
made by local detection and it enjoys excellent functionality
especially when there is a cryptoworm attack.

The general idea of network-level detection is that, if
multiple machines manifested the similar anomalous behavior
at about the same time, it is likely a cryptoworm attack. If
only a few machines are anomalous, these machines may be
misdiagnosed by local detection because cryptoworm spreads
swiftly, causing a mass of infected machines. It is easy to
know the number of anomalous machines in LAN by collecting
information from all the peers. However, this idea is hard to
be put into practice in WAN because it is difficult to efficiently
collect useful information. If we query all machines in WAN
for their security conditions, it will be time and network-
resource consuming. If we only pick several machines as
representatives, their information may not be reliable because
a few machines’ information cannot reveal the condition of the
entire WAN. To solve this dilemma, our solution is to apply
the ACO algorithm to the network-level detection so that we
can more efficiently collect the most useful information in the
least time.

To sum up, we use ACO-based Mechanism (ACOM) to
collect information from selected machines in WAN and use
Broadcasting Mechanism (BM) to collect information from all
machines in the same LAN. Then, we can use wisdom of
the crowd to provide user with collected data for reference
and help user determine whether to treat this machine as an
infected one or not.

A. ACO-based Mechanism

1) Ant Colony Optimization: Ant colony optimization
(ACO) is an optimization technique inspired by the path

finding behaviors of ants searching for food [7]. In nature,
ants use pheromone to communicate with each other. They
left pheromone along with the path they find food so that
other ants can also find food following the pheromone trails.
When there are multiple pheromone paths ahead, ants make
decision depending on the strength of pheromone trails. Most
ants choose the strongest pheromone trial and only a small
number of ants choose other ways. Over time, pheromone trails
will gradually evaporate. This means that pheromone trails
which no longer lead to a food source will eventually stop
being used, promoting ants to find new paths and new food
sources. Figure 4 gives an example of how ants searching for
food.

Fig. 4. Path finding behavior of ants searching for food.

Suppose the food resource is on the left side and the ant
colony is on the right side. There are two paths between food
resource and ant colony. Path A has shorter distance while
path B has longer distance. At the very beginning, both paths
may be chosen by ants from the ant colony and pheromone
trails are left on both paths. Since path A has shorter distance,
the ants on path A spend less time to go and back which
makes the pheromone trails on this path stronger than that on
path B. The stronger pheromone trail on path A will attract
more ants to this path. Overtime, almost all ants choose path A
instead of path B. That is a process how ants find the shortest
path between two places. So, ACO algorithm is always applied
to optimization problems such as travelling salesman problem



and various scheduling and routing problems. It has also been
applied to detect network intrusions and Botnet servers [14].

Our problem is similar to travelling salesman problem.
Instead of finding the shortest way to go through all cities,
we want to find the shortest way to collect most information
from other machines in WAN. So, we used ACO algorithm to
help us do network-level detection in WAN scenario so that
we can provide user with a helpful report without consuming
too much network resources.

2) Design of ACOM: There are two key elements in ACO:
ants and pheromone. To apply ACO to the network-level
detection, we should first decide what roles these two elements
should play in our approach. Since we want to collect most
information from other machines in WAN, we use ants to
collect and transmit information among machines just as what
they do when searching for food. Each anomalous machine
creates an ant and sends it to the network. Each time an ant
passes an anomalous machine, it records the security condition
of this machine in it and share the information it has collected
with the next machine it reaches. We consider pheromone as
the number of anomalous machines each ant has collected,
and it can be left on the machines that the ant passed. In this
manner, as ants travel in WAN, machines can have increasing
knowledge of the number of anomalous machines in WAN.

Then, according to the records in an ant when it finishes its
work and the level of pheromone left on the machine, ACOM
will generate a report telling user current situation in WAN.
Figure 5 shows the pseudo code of ACOM, which describes
the work procedure of this network-level detection mechanism.

Fig. 5. Pseudo code describing the work procedure of ACOM.

Once ACOM is launched, the anomalous local host creates
an ant and then sends this ant to network. The next destination
of the ant should be randomly selected from all machines
this local host can contact with. Then, ACOM goes into a
while loop. In this loop, the ant firstly notifies the current
local host to do local detection again if this local host is
not doing local detection. Then they exchange information
with each other. The local host here indicates the machine
that an ant is currently on. For example, we say machine A
created an ant and sent it to machine B, the event “exchange

information” happens between the ant and machine B. After
information exchange, ACOM checks if the ant has achieved
its goal which is the number of anomalous machines it needs
to collect during its travel. If the ant has collected sufficient
anomalous machines indicating a cryptoworm attack, it will go
back to the original machine that created this ant and report
to the user saying that ”At least T users in WAN think you
are in high risk”. Here, T should be replaced by the value of
threshold determined in different network environments. If the
ant has not achieved goal but has reached the upper bound
of its capability, it will go back as well but report that ”We
inquired 20 users in WAN, only A user(s) think(s) your are
in risk.” A should be replaced by the number of anomalous
machines known by the ant. Both of the above two cases lead
to the end of ACOM since it finished to provide user with
wisdom of the crowd for reference. Otherwise, the ant should
continue to work. The current local host it is on should decide
the next stop of the ant according to pheromone information
and send the ant to the next stop. The work procedure in the
while loop iterates until the ant goes back to its original local
host and reports our judgement. This is the entire workflow
of ACOM. The detailed implementation of ACOM will be
illustrated in the following subsection.

3) Implementation of ACOM: In the workflow of ACOM,
there are three important functions: CreateAnt(), ExchangeIn-
formation(), and DecideDirection(). The details of these three
functions are explained below.

Key Function 1: CreateAnt()
Ants are used to help the anomalous machines collect security
condition information of other machines from network. In
ACOM, anomalous machines create their own ants and send
them to network to collect information of other machines.
When a local host creates an ant, it needs to tell the ant three
main things: goal, home, and (upper) limit.

From a global perspective, we need to set a threshold T to
determine the upper bound of number of anomalous machines
in a safe scenario. That is to say, if ACOM on one anomalous
machine can obtain information of more than T anomalous
machines from WAN, it will alert user to potential high risk.
If ACOM finds less than T anomalous machines from WAN,
it concludes there is no cryptoworm attack and reports its
judgement to user. An ant’s goal is related to the threshold
T. It is defined as the number of anomalous machines that the
ant needs to collect during its travel. Let the value of goal be
G,

G = T − P ′. (3)

In equation (3), P’ indicates the number of anomalous ma-
chines known to the local host that created the ant, and it is
treated as the pheromone level. We will explain more details
about pheromone in the next function ExchangeInformation().
The value of goal equals to the difference between threshold
and pheromone because before a specific ant is created, some
other ants may have travelled through this local host and
deposit information about other anomalous machines observed
during their traversals. As such, leveraging such information,
this new ant will not need to start from scratch to reach
the threshold. If the ant can find G anomalous machines
from WAN, we think this machine is probably infected by
cryptoworm. Otherwise, we report this machine is probably not
infected. That is, ACOM will report our judgement according



to ant’s detection results.

The second thing the local host needs to tell the created
ant is the home address. Home address is the IP address of
this local host. With this address information, the ant could
return and report detection results when it finishes its work.

The system parameter limit stipulates that each ant can
only travel through at most N machines. We set this limitation
because we do not want the ant to go through so many
machines that consumes a great amount of time and network
resources.

Key Function 2: ExchangeInformation()

As an ant arrives at a new machine, it exchanges informa-
tion with the current local host so that both the ant and the
current local host can enrich their knowledge about security
condition in WAN. On one hand, ant tells local host a list
contains all anomalous machines it has collected up to now as
well as the count of anomalous machines which is considered
as pheromone. This process is to mimic the behavior of ants
in nature that leave pheromone trails on their way to food
resources. On the other hand, local host tells ant its local
detection result: whether it is anomalous or not. So, after
exchanging information, ant may collect one more record while
local host receives pheromone.

We also mimicked the property of pheromone that, it evap-
orates over time. We use this property because the machines
do not need to keep very old information on them since the
conditions of other machines in WAN may change over time.
In our model, pheromone value remains unchanged in the first
10 seconds after it reaches the local host. Then, it decreases
at a rate of 10% per second. Suppose the original amount of
pheromone is p, we can calculate pheromone p’ left on some
machine after t seconds using this formula:

p′(t) =
⌊
0.9t−10 ∗ p

⌋
, t ≥ 10. (4)

Review the goal of each ant in function CreateAnt(), the value
of p’ we can achieve in equation (4) should be used as the
variable p’ in the equation (3) to calculate the goal of each ant
when being created.

After exchanging information, the ant can decide whether
it should go back home and report its detection result. If it
has not finished its work, the local host should help ant decide
direction, that is, which machine to go as the next stop.

Key Function 3: DecideDirection()

In nature, ants decide their directions depending on the
strength of pheromone trails ahead; In ACOM, the next des-
tination of an ant is also decided depending on pheromone
information left on the current local host. Since we want the ant
to achieve its goal in shorter time if there exist some anomalous
machines in WAN, the optimal direction of the ant should be
an anomalous machine so that it can finish its work earlier.

To help an ant choose the next stop according to pheromone
information on the current local host, our strategy is to assign
weights to other machines that the current local host can
contact with. Since the local host has pheromone information
left by all passed ants, it has already known some anomalous
machines in WAN. So, it should assign larger weights to

these already known anomalous machines just like the already
known shorter paths in nature having stronger pheromone
trails. It assigns smaller weights to unknown machines just
like uncertain paths to food sources in nature having weaker
pheromone trails. In our implementation, the larger weights are
set to 2 while the smaller weights are set to 1 to simply dis-
tinguish known anomalous machines and unknown machines.
The stops which an ant has previously passed are assigned
with weight 0 because the ant does not need to go back to the
previous stops to gather information.

With weights set, current local host can calculate the
possibility of each machine to be chosen as the next stop.
The anomalous machines which have larger weights are more
likely to be selected as destination of the ant. Suppose there are
totally n machines in reach, the probability for some machine
to be chosen is equal to the weight of this machine over the
total weights of all machines in reach:

probability(k) =
weight(k)∑n
i=1 weight(i)

, 1 ≤ k ≤ n. (5)

By this way, the next stop of the ant is decided in random
but is not completely in random. The ant is more likely to be
sent to an anomalous machine so that it can collect sufficient
anomalous machines to prove a risky condition as soon as
possible if there exist cryptoworm attack. Meanwhile, it is also
possible that the ant can go to an undiscovered machine just
like an ant in nature opening up a new path. Thus, we can
guarantee that the information collected by ants are typical
enough to conclude the current situation in network while
very limited network resources and time will be consumed
by ACOM.

B. Broadcasting Mechanism

While ACOM is designed for collecting security condi-
tion information from WAN, another network-level detection
method called Broadcasting Mechanism (BM) is especially
designed for detection in LAN. It exhaustively inquiries all
machines in LAN and uses wisdom of the crowd to help user
determine whether the local host is infected. This process does
not consume too much network resource since the number of
machines in LAN is limited, but it provides overall view of
security condition in LAN.

Once BM is launched on a local host, it broadcasts the
anomalous condition of the local host to all other machines
in LAN meanwhile it receives this kind of information from
other anomalous machines so that it can have a general idea
about the number of anomalous machines in LAN at this point.
Then, it generates a comprehensive report to tell user current
security condition in LAN. For example, if there are totally
100 machines and 80 of them are anomalous, BM will generate
a report saying that ”80% machines in LAN also experience
anomalies, so your computer is in high risk of cryptoworm
attack.” Based on the reports from ACOM and BM, the user
can make a judgement by himself(herself) about whether to
treat his(her) computer as an infected machine.



VI. EVALUATION OF NETWORK-ASSISTED APPROACHES

In this section, we describe how we established a test envi-
ronment in which 100 Docker containers are used to simulate
a real-world network scenario and a Linux ransomware sample
called GonnaCry [8] is applied on simulative infected machines
to evaluate the performances of NAA.

Although NAA is an integrated approach, we compared
the accuracy, message overheads and latency of local detection
mechanism, ACOM and BM to verify whether network-level
detection can improve local detection and to verify applicabil-
ity of ACOM and BM in different scenarios. To distinguish the
local detection mechanism used by ACOM and BM with the
mechanism itself when treated as an independent mechanism,
we name the independent local detection mechanism Direct
Report (DR). In the rest of this section, we will compare
DR, ACOM and BM to have an comprehensive evaluation
about the performance of each part of NAA. Note that, DR
directly uses the detection result of local detection mechanism
as the final result; ACOM is supported by the local detection
mechanism and further uses the ACO algorithm to perform
network-level detection to achieve a final report; BM also uses
the local detection mechanism as a baseline and then collects
information of all machines in simulative network to make a
final report according to the number of anomalous machines.

A. Experiment Environment

Docker is a platform that provides resources and services
for application development and test. It uses OS-level virtu-
alization to deliver software in packages called containers.
Containers can be considered as simplified virtual machines
because each container has its own configuration files and
libraries but is run by a single operating system kernel
which results in fewer resources demands. Containers can
communicate with each other through well-defined channels
as well as maintaining isolated from one another. So, we use
Docker containers to simulate the real-world network scenario
instead of using virtual machines due to the functionality and
simplification of containers. In our experiment, we established
100 containers, each of which is equipped with DR, ACOM
and BM, to simulate a network environment containing 100
machines which can communicate with each other when it
is needed. When testing a specific mechanism, we run this
mechanism on all 100 containers for 10 times and observe its
average performances.

To simulate the scenarios that some specified machines
are attacked by ransomware, we run a Linux ransomware
sample called GonnaCry on these specified containers and then
execute a detection mechanism on each container to test its
performances in this situation. GonnaCry employs a hybrid
scheme which is utilized by most real-world ransomware
nowadays combining asymmetric encryption and symmetric
encryption together. To make the ransomware more secure
from the attacker’s perspective, GonnaCry contacts a remote
server which keeps a pair of RSA keys for it, although the
ransomware itself also has its own RSA key pair so that the
victims cannot get the decryption key directly from their local
hosts. The working procedure of GonnaCry is as following:
The remote server generates a pair of RSA keys. The public
key S pub is hardcoded in GonnaCry while the private key

S priv is preserved on the remote server. When GonnaCry
starts to work, it generates its own RSA key pair on the local
host. The public key is called C pub and the private key is
called C priv. Then, it uses AES cipher to encrypt the local
private key C priv with the server’s public key S pub and
also uses AES cipher to encrypt target files with local public
key C pub. In this case, if someone wants to recover these
encrypted files, he/she needs to get the server’s private key
S priv first to recover the local private key C priv so that
he/she can use C priv to decrypt files. Since the server’s private
key S priv is stored on the remote server, the victim has to
pay the ransom to obtain this key. We apply GonnaCry on
simulative infected machines due to its realism.

We respectively simulated 11 different scenarios with in-
creasing numbers of infected machines and decreasing num-
bers of safe machines while the total number is always 100.
In each scenario, we respectively apply three different mech-
anisms on containers and test 10 times to achieve reasonable
average results of accuracy, message overhead and latency.

To determine the value of limit N and threshold T, we
tried many different values under this 100-machine scenario.
Finally, we decided that N = 20 and T = 3 because this setting
contributes a best balance between accuracy and efficiency
which considers both time consumption and network resource
consumption.

B. Accuracy

Accuracy is defined as the correctly reported cases out
of overall cases, that is, accuracy = (true positives + true
negatives) / (true positives + false positives + true negatives +
false negatives). Since BM just reports the fact it observed
using wisdom of the crowd instead of reporting its own
judgement, we only evaluate the accuracy of DR and ACOM.
The result is shown in Figure 6, the x-axis represents the
number of infected machines, the y-axis indicates accuracy
of DR and ACOM.

Fig. 6. Accuracy Comparison of ACOM and DR

We can observe that ACOM has greater advantage over
DR when there are only a few infected machines. As the
number of infected machines increases, although ACOM does
not have evident superiority, it is still more accurate than DR
in most cases. This test result proves that the network-level
detection can help improve accuracy of local detection. Plus
the comprehensive report from BM, user can make an even



more precise decision about whether the local host is attacked
by ransomware. If the ransomware is a cryptoworm, it can be
detected at very beginning if NAA is deployed due to high
accuracy of ACOM at the time that only a few machines are
infected.

C. Message Overheads

Message overhead is another important factor in considera-
tion since we do not want to cause too much network resource
consumption during the process of ransomware detection.
If a ransomware detection approach produces huge resource
consumption which is heavier than the damage of ransomware
itself, it should not be put into practice. It is obvious that
these three mechanisms we put forward will not cause huge
resource consumption compared with the expensive extortion
fee of ransomware, but we still want to figure out their message
overhead to see which mechanism is optimal from this aspect.
We define message overhead as the extra messages produced
by ransomware detection approaches. In ACOM, machines
need to send and receive ants during the detection process. In
BM, machines need to send and receive news about whether
a specific machine is anomalous or not. So, both ACOM and
BM produce extra messages when they are running. Figure 7
shows the message overhead of Dr, BM and ACOM. The x-
axis indicates the number of infected machines and the y-axis
indicates the number of messages being produced during each
detection process.

Fig. 7. Message overhead of three mechanisms.

We can observe that DR performs best when coming across
message overhead measurement because it directly uses the
detection results of local detection mechanism which does not
produce any additional messages. BM produces more message
overheads than ACOM does in most cases. As the number
of infected machines increases, the message overhead of BM
drastically grows while that of ACOM slightly grows. The
reason is that, BM requires each anomalous machine to send
messages to all peers while ACOM only allows each ant to
go through at most 20 machines. Thus, apply BM to LAN
scenario is a reasonable arrangement from message overhead’s
perspective since there are limited machines in LAN making
the message overhead of BM countable.

D. Latency

Latency is the time duration that each mechanism needs
to complete its task. We calculated the average latency on

all machines in each test. Figure 8 shows the latency of DR,
BM and ACOM. The x-axis indicates the number of infected
machines and the y-axis indicates the average seconds that
each mechanism consumes during its work.

Fig. 8. Latency of three mechanisms.

As for DR, its latency is approximately 0 because it only
does local detection which can be completed in very short
time. As for BM, no matter how many victims exist, the
anomalous machines always broadcast a message and receive
messages from other anomalous peers and then a report is
sent to user depending on the number of anomalous machines
in LAN. All machines work in parallel following the above
procedure, which makes the runtime of all machines be similar
to the runtime of one randomly picked machine. So, the
average latency of BM only has a little fluctuation as the
number of infected machines increases. As for ACOM, each
anomalous machine creates an ant that goes through at least 3
machines one after one. As the number of infected machines
increases, more ants will be created which makes average
runtime increase. So, ACOM has the worst latency among
three integrated approaches while Direct Report almost has
no latency. However, the high latency of ACOM does not do
extra damage to infected machines because all suspicious tasks
are suspended before ACOM is launched so that ransomware
cannot encrypt files when network-level detection is working.

E. Loss Assessment

In this section, we estimated the damages that a ran-
somware can cause on a machine before it is detected by
our ransomware detection approach NAA. That is, how many
files can be encrypted before the ransomware is detected and
terminated.

We can learn from the test results shown above that ACOM
has relatively long delay before reporting our diagnosis to
user. However, it does not result in additional damage because
before ACOM is launched, all suspicious tasks are suspended
until user takes further actions. So, the number of files being
encrypted during the process of local detection is exactly the
losses of this machine. Figure 9 shows the average number of
encrypted files on a victim machine if NAA is applied on. The
x-axis is the number of infected machines in LAN, the y-axis
is the average number of encrypted files.

We can observe that no matter how many machines are
infected, the number of encrypted files on each machine



Fig. 9. Average number of encrypted files.

ranges from 15 to 30, which is acceptable loss owe to the
quick job of our local detection mechanism.

Based on our evaluation results concerning accuracy, mes-
sage overheads, latency and loss assessment, we find that
network-level detection can indeed help improve the accuracy
of local detection. From message overhead’s point of view,
ACOM is applicable to WAN scenario while BM is appli-
cable to LAN scenario for network-level detection. Moreover,
NAA provides good performance especially for detecting cryp-
toworm attack since our network-level detection can provide
user with very accurate alert in the early stage of cryptoworm
attack.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a network-assisted approach
called NAA for ransomware detection which combines lo-
cal detection and network-level detection together. We first
describe a local detection mechanism which uses three local
features to judgement whether the local host is anomalous. In
network-level detection, we implement ACOM to efficiently
collect information in WAN scenario and put forward BM
which exhaustively inquires all machines in LAN. Then,
the network-level detection uses wisdom of the crowd to
provide user with a comprehensive report so that user can
easily make his(her) judgement based on the information we
offered. To evaluate our approach, we use docker to establish
the experiment environment and use GonnaCry to simulate
ransomware attack. The test results show that NAA is more
accurate than local only detection and is especially applicable
for cryptoworm detection meanwhile the loss of files during
the working procedure of NAA is acceptable.

However, due to the limited resource of Linux ransomware
sample, we only used GonnaCry to simulate ransomware attack
in our evaluation experiments. In the future, we will test the
performance of NAA using some other Linux ransomware
samples especially Linux cryptoworm samples when they are
accessible.
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